Solutions of Assignment 6

Q1. (a) When $\alpha = 1$, we can directly verify the convexity of |x| by considering for any $\lambda \in [0, 1]$ and for all $x, y \in \mathbb{R}$, then

$$|\lambda x + (1 - \lambda)y| \le \lambda |x| + (1 - \lambda)|y| \qquad (\text{triangle inequality})$$

When $\alpha > 1$, $f(x) = x^{\alpha}$ is twice-differentiable and $f''(x) = \alpha(\alpha - 1)x^{\alpha - 2} \ge 0$. Then, the result follows from second-order condition.

(b) We compute

$$\operatorname{Hess}(f) = \begin{pmatrix} \frac{2}{y} & -\frac{2x}{y^2} \\ -\frac{2x}{y^2} & \frac{2x^2}{y^3} \end{pmatrix} = \frac{2}{y^3} \begin{pmatrix} y^2 & -xy \\ -xy & x^2 \end{pmatrix}$$
$$e_{j}^{2} = \frac{2}{y^2} > 0 \text{ and } \left(\frac{2}{y^2}\right)^2 \begin{vmatrix} y^2 & -xy \\ y^2 & -xy \end{vmatrix} > 0$$

Note that $\frac{2}{y^3} |y^2| = \frac{2}{y} \ge 0$ and $\left(\frac{2}{y^3}\right)^2 \begin{vmatrix} y^2 & -xy \\ -xy & x^2 \end{vmatrix} \ge 0$. So Hess(f) is positive semi-definite, for all $(x, y) \in \mathbb{R} \times (0, \infty)$, f(x, y) is convex on $\mathbb{R} \times (0, +\infty)$.

(c) Note that

 $\nabla f(x) = Px + q$ and $\operatorname{Hess}(f) = P$

which is symmetric and positive semi-definite, and use second-order condition, f(x) is convex.

- **Q2.** (a) We separate into following cases:
 - Case 1: $x \notin X$

Then, we have $I(x) = +\infty$, so by convention, $\partial I(x) = \emptyset$ because no finite subgradient exists.

• Case 2: $x \in X$

Then I(x) = 0, so for any $y \in \mathbb{R}^N$, the subgradient inequality becomes:

$$I(y) \ge w^T(y-x)$$

If $y \in X$, then I(y) = 0 yields $0 \ge g^T(y - x) \iff g^T(y - x) \le 0$. If $y \notin X$, then $I(y) = +\infty$ and the inequality holds automatically. So, the condition $w^T(y - x) \le 0$ holds for all $y \in X$, and this defines the **normal cone** to X at x, denoted as follows:

$$N_X(x) = \left\{ w \in \mathbb{R}^N : w^T(y - x) \le 0, \ \forall y \in X \right\}$$

Thus, the subdifferential of the indicator function I(x) is

$$\partial f(x) = \begin{cases} N_X(x), & \text{if } x \in X, \\ \emptyset, & \text{if } x \notin X. \end{cases}$$

where $N_X(x)$ is the normal cone to X at x.

(b) For $x \in (-2, 1), (-1, 1)$ and (1, 2), f is differentiable, hence $\partial f(x) = \{\nabla f(x)\}$. For $x \in (-\infty, -2) \cup (2, \infty), f(x) = \infty$, hence $\partial f(x) = \emptyset$. For x = 1, we show that $\partial f(x) = [0, 1]$. Let $w \in \partial f(1)$, then $f(y) \ge w(x - 1) \quad \forall y \in \mathbb{R}$

If
$$y \in [1, 2]$$
, then $x - 1 \ge w(x - 1)$, that is $1 \ge x$.
If $y \in [-1, 1]$, then $0 \ge w(x - 1)$, so $w(1 - x) \ge 0$ and $w \ge 0$.
It is easy to check that for $w \in [0, 1]$, w satisfies

$$f(y) \ge f(1) + w(x-1), \quad \forall y$$

Hence $\partial f(1) = [0, 1]$. Thus, we have

$$\partial f(x) = \begin{cases} \emptyset & x \in (-\infty, -2) \cup (2, \infty) \\ (-\infty, -1] & x = -2 \\ \{-1\} & x \in (-2, -1) \\ [-1, 0] & x = -1 \\ \{0\} & x \in (-1, 1) \\ [0, 1] & x = 1 \\ \{1\} & x \in (1, 2) \\ [1, \infty) & x = 2 \end{cases}$$

- **Q3.** (1) Consider $f(x) = \frac{1}{x}$, dom $f = (0, +\infty)$, K = (0, 1]. Since $f'(x) = -\frac{1}{x^2}$ is unbounded on K, f is not Lipschitz continuous.
 - (2) Consider $f(x) = x^2$, dom $f = K = \mathbb{R}$. Since f'(x) = 2x is unbounded on $K = \mathbb{R}$, the function is not Lipschitz continuous on K.
 - (3) Consider $f(x) = -\sqrt{x}$, dom $f = [0, +\infty)$, K = [0, 1]. Since

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} -\frac{1}{\sqrt{x}}$$

does not exist, f is not Lipschitz continuous on K.